МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Нововоронежский политехнический институт –

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(НВПИ НИЯУ МИФИ)

УТВЕРЖДЕН:

Педагогическим советом

«<u>17</u>» <u>март</u> 2023г., протокол № <u>550</u>

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

«Насосы, вентиляторы, компрессоры»

Направление подготовки: 14.03.01. Ядерная энергетика и теплофизика

Наименование образовательной программы: Эксплуатация, техническое

обслуживание и ремонт оборудования АЭС

Уровень образования: бакалавриат

Форма обучения: очная

Паспорт

фонда оценочных средств по дисциплине «Насосы, вентиляторы, компрессоры»

1. Модели контролируемых компетенций:

Оценочные средства для контроля по дисциплине направлены на проверку знаний и умений студентов, являющихся основой формирования у обучающихся компетенции:

- ПК-14, Способен участвовать в испытаниях и определении работоспособности установленного и ремонтируемого оборудования
- ПК-9.1 Оперативное обслуживание основного и вспомогательного оборудования реакторного (реакторно-турбинного) цеха атомной электростанции

Согласно Рабочему учебному плану направления, в формировании данной компетенции участвуют дисциплины и виды практик:

ПК-14

Тепломассобмен

Насосы, вентиляторы, компрессоры

Вспомогательное оборудование АЭС

Испытание и наладка энергетического оборудования

Экспериментальные методы исследований на АЭС

Технологические системы АЭС

Эксплуатация АЭС

Эксплуатация турбомашин АЭС

Учебная практика (ознакомительная)

Учебная практика (технологическая)

Производственная практика (эксплуатационная)

Производственная практика (преддипломная)

Подготовка к процедуре защиты и защита выпускной квалификационной работы

ПК-9.1

Принципы обеспечения безопасности АЭС

Монтаж и ремонт энергетического оборудования

Культура безопасности

Насосы, вентиляторы, компрессоры

Вспомогательное оборудование АЭС

Технологические системы АЭС

Обращение с ядерным топливом и радиоактивными отходами

Эксплуатация АЭС

Эксплуатация турбомашин АЭС

Производственная практика (эксплуатационная)

Производственная практика (преддипломная)

Подготовка к процедуре защиты и защита выпускной квалификационной работы

.

В результате освоения дисциплины студенты должны:

знать:

- 31- методы проведения испытаний и определения работоспособности установленного и ремонтируемого оборудования;
- 32- методы планирования монтажно-наладочных работы по вводу в эксплуатацию оборудования и проведения приемосдаточных испытаний оборудования;

уметь:

- У1- применять методы проведения испытаний и определения аботоспособности установленного и ремонтируемого оборудования;
- У2- планировать монтажно-наладочные работы по вводу в эксплуатацию оборудования и проводить приемосдаточные испытания оборудования;

владеть:

В1-навыками проведения испытаний и определения работоспособности установленного и ремонтируемого оборудования;

B2- навыками планирования монтажно- наладочных работы по вводу в эксплуатацию оборудования и проведения приемосдаточных испытаний оборудования.

Соотнесение знаний, умений и навыков с компетенциями приведено в таблице:

Индекс компетенции	Проектируемые результаты освоения дисциплины «Насосы, вентиляторы, компрессоры» и индикаторы формирования			Средства и технологии
	Знания (3)	компетенций Умения (У)	Навыки (В)	оценки
ПК-14, ПК- 9.1	3.1, 3.2	У.1-У2	B.1, B.2	УО, Т.

Формой аттестации по дисциплине «Насосы, вентиляторы, компрессоры» является зачет.

2. Программа оценивания контролируемой компетенции:

		Код	Наимен	нование	
$N_{\underline{0}}$	Контролируемые разделы	контролируемой	оценочного средства		
п/п	дисциплины	компетенции (или ее части)	текущий	рубежный	
Раз,	Раздел №1. Насосы и газодувные машины в энергоблоках АЭС				
1	Введение. Место насосов и газодувных машин в схемах энергоблоков АЭС.	ПК-14, ПК-9.1	УО		
2	Лопаточные нагнетатели.	ПК-14, ПК-9.1	УО		
Раз,	Раздел №1. Насосы и газодувные машины в энергоблоках АЭС				
3	Особенности различных типов лопаточных нагнетателей	ПК-14, ПК-9.1	УО		
4	Нагнетатели вытеснения.	ПК-14, ПК-9.1	УО		

Оценка выставляется преподавателем с учетом всех представленных студентами работ по дисциплине в течение семестра.

Формулировка результата	Показатели освоения	Средства	Формируемые	
D	результата	оценки	компетенции	
В результате освоения дисциплины студент должен знать				
31- методы проведени	я -назначение,			
испытаний и определени	я требования и			
работоспособности	принципы работы	УО	ПК-14	
установленного	и насосов;		11111-1-4	
ремонтируемого оборудования	- параметры			
	режимов работы.			
32- методы планировани	я -назначение,			
монтажно-наладочных работи	ы требования и		ПИ 0 1	
по вводу в эксплуатацин	о принципы работы	УО	ПК-9.1	
оборудования и проведени	я насосов;			
приемосдаточных испытани	й - параметры			
оборудования	режимов работы.			
В результате освоения дисциплины студент должен уметь				
У1- применять методы	-назначение,			
проведения испытаний и	требования и	УО		
определения	принципы работы	30	ПК-14	
аботоспособности	насосов;			
установленного и	- параметры режимов			

ремонтируемого оборудования	работы.				
У2- планировать монтажно-	-назначение,		ПК-9.1		
наладочные работы по вводу в	требования и				
эксплуатацию оборудования и	принципы работы	УО			
проводить приемосдаточные	насосов;				
испытания оборудования	- параметры режимов				
	работы.				
	В результате освоения дисциплины студент должен владеть				
В результате освоения дисцип	лины студент должен в	ладеть			
В результате освоения дисцип В1-навыками проведения	лины студент должен в -назначение,	ладеть			
	-назначение,	ладеть			
В1-навыками проведения	-назначение,	у О	ПК 14		
В1-навыками проведения испытаний и определения	-назначение, требования и		ПК-14		
В1-навыками проведения испытаний и определения работоспособности	-назначение, требования и принципы работы		ПК-14		

Перечень оценочных средств

Собеседование	Средство контроля, рассчитанное на	Вопросы по
(устный опрос)	выяснение объема знаний обучающегося по	темам/разделам
	определенному разделу, теме, проблеме и	дисциплины
	Т.П.	
Тест	Система стандартизированных заданий,	Фонд тестовых
	позволяющая автоматизировать процедуру	заданий
	измерения уровня знаний и умений	
	обучающегося.	

3. Оценочные средства.

3.1. Устный опрос (в форме собеседования).

Устный опрос по дисциплине проводится в форме собеседования. Собеседование проводится с каждым студентом индивидуально. Преподаватель задает вопросы из приведенного ниже списка вопросов. По результатам опроса студента производится оценка его ответов и выставляется количество баллов.

РАЗДЕЛ 1. «Введение. Место насосов и газодувных машин в схемах энергоблоков АЭС».

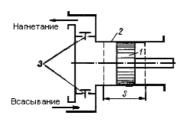
- 1. Назначение и применение насосов.
- 2. Назначение и применение вентиляторов и компрессоров в теплоэнергетике.
- 3. Роль насосов и тягодутьевых машин в обеспечении нормальной работы АЭС.
- 4. Подача и давление насоса.
- 5. Что такое гидравлическая сеть?
- 6. Объясните понятия «кавитация» и «кавитационный запас».

- 7. Напорная характеристика насоса.
- 8. Основные требования к главным циркуляционным насосам 1-го контура АЭС.
- 9. Особенности работы конденсатных насосов и основные требования к ним.
- 10. Напорная характеристика насоса.

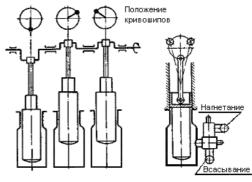
Критерии оценки (максимальное количество баллов – 20 баллов):

- 18 20 баллов при ответе на 10 вопросов без ошибок;
- 16 17 баллов при ответе на 10 вопросов с незначительными неточностями;
- 14 15 баллов при ответе на 9 вопросов без ошибок;
- 12 13 баллов при ответе на 9 вопросов с незначительными неточностями;
- 10 11 баллов при ответе на 8 вопросов без ошибок;
- 9 баллов при ответе на 8 с незначительными неточностями;
- 8 баллов при ответе на 7 вопросов без ошибок;
- 7 баллов при ответе на 7 вопросов с незначительными неточностями;
- 6 баллов при ответе на 6 вопросов;
- 5 баллов при ответе на 5 вопросов;
- 4 балла при ответе на 4 вопроса;
- 3 балла при ответе на 3 вопроса;
- 2 балла при ответе на 2 вопроса;
- 1 балл при ответе на 1 вопрос;
- 0 баллов при отсутствии ответа на все вопросы;

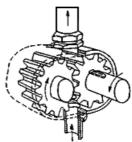
РАЗДЕЛ 2. «Лопаточные нагнетатели».

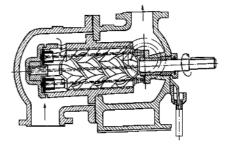

- 1. Классификация нагнетателей по принципу действия, роду перемещаемых сред, назначению, рабочим параметрам.
- 2. Основы теории лопаточных нагнетателей, типы рабочих лопаток, центробежных и осевых нагнетателей.
- 3. Принцип действия лопаточного нагнетателя.
- 4. Коэффициент полезного действия нагнетателя. Мощность, потребляемая нагнетателем. Относительные коэффициенты полезного действия.
- 5. Гидравлические, объемные и механические потери в рабочем колесе, во входном и выходном устройствах.
- 6. Многоступенчатые нагнетатели.
- 7. Применение уравнение Эйлера для расчетов нагнетателя.
- 8. Что такое теоретический напор?
- 9. Решетки профилей рабочих и направляющих лопаток центробежного и осевого нагнетателей.
- 10. Влияние геометрических и кинематических элементов рабочего колеса на напор нагнетателя.

Критерии оценки (максимальное количество баллов – 20 баллов):

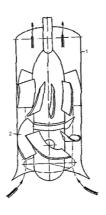

18 - 20 баллов – при ответе на 10 вопросов без ошибок; 16 - 17 баллов – при ответе на 10 вопросов с незначительными неточностями; 14 - 15 баллов – при ответе на 9 вопросов без ошибок; 12 - 13 баллов – при ответе на 9 вопросов с незначительными неточностями; 10 - 11 баллов – при ответе на 8 вопросов без ошибок; 9 баллов – при ответе на 8 с незначительными неточностями; 8 баллов – при ответе на 7 вопросов без ошибок; 7 баллов – при ответе на 7 вопросов с незначительными неточностями; 6 баллов – при ответе на 6 вопросов; 5 баллов – при ответе на 5 вопросов: 4 балла – при ответе на 4 вопроса; 3 балла – при ответе на 3 вопроса; 2 балла – при ответе на 2 вопроса; 1 балл – при ответе на 1 вопрос; 0 баллов – при отсутствии ответа на все вопросы; 3.2. Тест Содержание тестовых материалов 1. Задание Основные параметры насосов (отметить): Основные параметры насосов (отметить): ☑ Подача □ Скорость ☑ Напор Мощность □ Работа 2. Задание Отметить (три вида) Классификация насосов по принципу действия ☑ насосы вытеснения ☑ лопастные насосы ☑ струйные насосы □ водяные насосы □ маслянные насосы □ шестеренчатые насосы 3. Задание Отметить насосы с поступательным движением тела вытеснения ☑ поршневые ☑ скальчатые ☑ плунжерные □ зубчатые □ винтовые 4. Задание

Отметить соответствие схемы насоса и его названия


поршневой насос


скальчатый насос

шестеренчатый насос


винтовой насос

пластинчатый насос

осевой насос

5. Задание

Показать соответствие типа насоса и формулы для расчета подачи

Подача зубчатого насоса

$$Q = 2\pi m^2 z b n$$

Подача винтового насоса

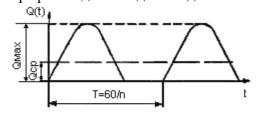
$$Q_m = 0.069 \ln d_{_H}^{^{3}}$$

Средняя подача пластинчатого насоса

$$Q_0 = 2eb(2\pi r - \delta z)n$$

подача поршневого насоса

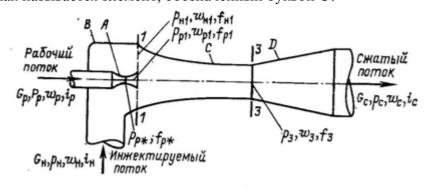
$$Q = f*Si / 60$$


6. Задание

Какие из приведенных энергетических машин являются первичными двигателями?

- ☑ паровые
- ☑ водяные
- ☑ гидравлические
- □ электрические
- □ пневматические
- ☑ ветровые
- □ инерционные
- □ пружинные

7. Задание


График подачи жидкости для какого насоса показан на графике?

шестеренчатого
скальчатого
вихревого
струйного

8. Задание

На рисунке показана принципиальная схема струйного аппарата. Как называется элемент, обозначенный буквой С?

- □ рабочее сопло
- □ приемная камера
- ☑ камера смешения
- □ диффузор
- □ эжектор
- □ инжектор

9. Задание

Процессы, характерные для всех без исключения струйных аппаратов, описываются тремя законами:

Покажите соответствие.

сохранения энергии сохранения массы сохранения импульса

hp+uhH = (1+u)hc Gc = Gp + GHI = Gw + pf

10. Задание

Все струйные аппараты разбить на следующие три группы в зависимости от агрегатного состояния взаимодействующих сред:

Показать соответствие.

- 1) аппараты, в которых агрегатное состояние рабочей и инжектируемой сред одинаково;
- 2) аппараты, в которых рабочий и инжектируемый потоки находятся в разных агрегатных состояниях, не изменяющихся в процессе смешения этих потоков;
- 3) аппараты с изменяющимся агрегатным состоянием сред. В этих аппаратах ра-бочий и инжектируемые потоки до смешения находятся в разных фазах, а после смешения в одной фазе, т. е. в процессе смешения изменяется агрегатное состояние одного из потоков.

11. Задание

Показать соответствие струйных аппаратов со свойствами взаимодействующих сред: Равнофазные газо-(паро)струйные компрессоры, эжекторы и инжекторы, а также струйные насосы струйные аппараты для пневмотранспорта, водовоздушные эжекторы и струйные аппараты для гидротранспорта

пароводяные инжекторы и струйные подогреватели

Газо(паро)струйные компессоры

Упругие среды

Газо(паро)струйные эжекторы Газо(паро)струйные инжекторы

Равнофазные

Неупругие среды

Разнофазные

Рабочая – упругая, инжектируемая - неупругая

Струйные насосы

Струйные аппараты для пневмотранспорта

Разнофазные

Рабочая – неупругая, инжектируемая - упругая

Водовоздушные эжекторы

Разнофазные

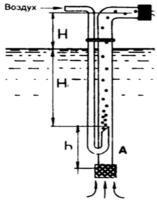
Рабочая и инжектируемая - неупругие

Струйные аппараты для гидротранспорта

Изменяющейся фазности

Рабочая – упругая, инжектируемая - неупругая

Пароводяные инжекторы

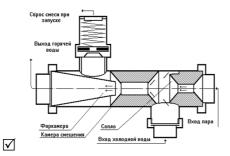

Изменяющейся фазности

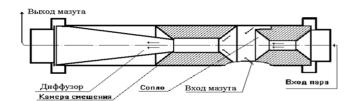
Рабочая – неупругая, инжектируемая - упругая

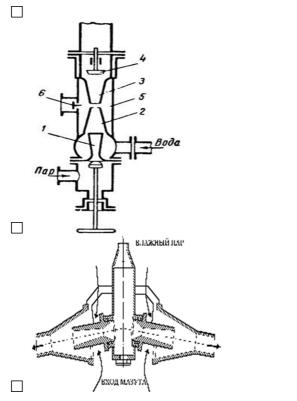
Пароводяные смешивающие подогреватели

12. Задание

Как называется этот струйный аппарат?


- ☑ Эрлифт
- □ Гидроэлеватор
- □ Пароводяной струйные насос
- □ Струйные циклон деаэратор
- □ Насос паромазутный погружной струйный
- □ Струйныйнасос-подогреватель


13. Задание


Покажите соответствующую схему.

Струйный насос-подогреватель.

Предназначен для быстрого разогрева воды и водных растворов

14. Задание

Отметить струйные аппараты с изменяющейся фазностью сред.

- ☑ Пароводяные инжекторы
- ☑ Пароводяные смешивающие подогреватели
- □ Водовоздушные эжекторы
- □ Струйные аппараты для пневмотранспорта
- □ Газо(паро)струйные эжекторы
- □ Струйные аппараты для гидротранспорта
- □ Струйные насосы

3.3. Задания для проведения экзамена.

Зачет по дисциплине «Насосы, вентиляторы, компрессоры» проводится в письменной и устной форме. Подготовка к зачету осуществляется по приведенным ниже вопросам.

3.2.1. Вопросы к экзамену.

РАЗДЕЛ 1. «Введение. Место насосов и газодувных машин в схемах энергоблоков АЭС».

- 1. Назначение и применение насосов.
- 2. Назначение и применение вентиляторов и компрессоров в теплоэнергетике.
- 3. Роль насосов и тягодутьевых машин в обеспечении нормальной работы АЭС.
- 4. Подача и давление насоса.
- 5. Что такое гидравлическая сеть?
- 6. Объясните понятия «кавитация» и «кавитационный запас».
- 7. Рассчитайте допустимую высоту установки бака, из которого вода, имеющая температуру насыщения, поступает на всас насоса, для двух вариантов конструктированого выполнения насоса: с предвключенным колесом и без него. Требуемый расход воды 1650 м3/ч, частота вращения вала насоса 2980 об/мин; гидравлическое сопротивление трубопровода, соединяющего бак с насосом, 15кПа.
- 8. Определите необходимое давление нагнетания насоса, подающего воду расходом 3750 м3/ч на высоту 30 м в парогенератор, давление в котором равно 6,4 МПа. При заданном расходе сопротивления элементов гидравлической сети насоса равны: трубопровода 0,5 МПа, блока регулирующих клапанов 1,5 МПа, теплообменников 1,0 МПа.
- 9. Определите повышения энтальпии воды в конденсатном насосе 2-го подъема, его напор и мощность приводного электродвигателя, если известно: давление 1-го подъема; насос подает воду расходом 1000 м3/ч в деаэратор с давление 0,69 МПа на высоту 15 м, преодолевая гидравлическое сопротивление трубопровода и элементов оборудования, равное 2,0 МПа. Необходимые для расчетов значение КПД принять.

РАЗДЕЛ 2. «Лопаточные нагнетатели».

- 10. Напорная характеристика насоса.
- 11. Основные требования к главным циркуляционным насосам 1-го контура АЭС.
- 12. Особенности работы конденсатных насосов и основные требования к ним.
- 13. Классификация нагнетателей по принципу действия, роду перемещаемых сред, назначению, рабочим параметрам.

- 14. Основы теории лопаточных нагнетателей, типы рабочих лопаток, центробежных и осевых нагнетателей.
- 15. Принцип действия лопаточного нагнетателя.
- 16. Коэффициент полезного действия нагнетателя. Мощность, потребляемая нагнетателем. Относительные коэффициенты полезного действия.
- 17. Гидравлические, объемные и механические потери в рабочем колесе, во входном и выходном устройствах.
- 18. Многоступенчатые нагнетатели.
- 19. Применение уравнение Эйлера для расчетов нагнетателя.
- 20. Что такое теоретический напор?
- 21. Решетки профилей рабочих и направляющих лопаток центробежного и осевого нагнетателей.
- 22. Влияние геометрических и кинематических элементов рабочего колеса на напор нагнетателя.

РАЗДЕЛ 3. «Особенности различных типов лопаточных нагнетателей».

- 23. Что такое степень реактивности?
- 24. Характеристики лопаточных нагнетателей. Типы рабочих характеристик.
- 25. Теоретические характеристики напора и мощности при постоянном числе оборотов.
- 26. Действительные характеристики.
- 27. Построение характеристик по результатам испытаний.

РАЗДЕЛ 4. «Нагнетатели вытеснения»

- 28. Вентиляторы. Классификация вентиляторов.
- 29. Выбор вентиляторов по характеристикам на заданные условия работы. Эксплуатация вентиляторов.
- 30. Вентиляторные установки. Явление самотяги в вентиляторных установках.
- 31. Компрессоры. Основные уравнения сжатия газа в ступени компрессора.
- 32. Построение процессов сжатия в тепловых диаграммах. КПД компрессора.
- 33. Регулирование производительности компрессоров, применяемых в теплоэнергетике.
- 34. Поршневые насосы. Принцип действия и области применения.
- 35. Что такое неравномерность всасывания и подачи?
- 36.КПД и мощность насоса вытеснения.
- 37. Поршневые компрессоры. Индикаторная диаграмма компрессора.
- 38.Производительность. Объемные КПД. Регулирование производительности.
- 39. Устройство компрессорных станций.
- 40. Ротационные нагнетатели, их основные типы и области применения.

Критерии оценки экзамена.

Итоговая сумма	Оценка по 4-бальной	Отметка о	Оценка	Гродолука
баллов	шкале	зачете	ECTS	Градация
90-100	отлично		A	отлично
85-89			В	очень хорошо
75-84	хорошо	201170110	С	хорошо
70-74		зачтено	D	VHODHOTDOMITOHI HO
65-69	VIODIOTROPHTOHINO		ט	удовлетворительно
60-64	удовлетворительно		Е	посредственно
ниже 60	неудовлетворительно	не зачтено	F	неудовлетворительно

<u>Зачтено «Отлично»</u> - теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному.

<u>Зачтено «Очень хорошо»</u> - теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом в основном сформированы, все предусмотренные программой обучения учебные задания выполнены, качество выполнения большинства из них оценено числом баллов, близким к максимальному.

Зачтено «Хорошо» - теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками.

<u>Зачтено «Удовлетворительно»</u>- теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки.

Зачтено «Посредственно» - теоретическое содержание курса освоено частично, некоторые практические навыки работы не сформированы, многие предусмотренные программой обучения учебные задания не выполнены, либо качество выполнения некоторых из них оценено числом баллов, близким к минимальному.

<u>Не зачтено «Неудовлетворительно»</u> - теоретическое содержание курса освоено частично, необходимые практические навыки работы не сформированы, большинство предусмотренных программой обучения учебных заданий не выполнено, либо качество их выполнения оценено числом баллов, близким к минимальному; при дополнительной

самостоятельной работе над материалом курса возможно повышение качества выполнения учебных заданий.