МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Нововоронежский политехнический институт –

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(НВПИ НИЯУ МИФИ)

УТВЕРЖДЕН:

Педагогическим советом

«<u>17</u>» <u>мары 2023г., протокол № 550</u>

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

«ТЕОРИЯ ВЕРОЯТНОСТЕЙ. МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Направление подготовки: 13.03.02. Электроэнергетика и электротехника

Наименование образовательной программы: Электрические станции

Уровень образования: бакалавриат

Форма обучения: очная

1. Паспорт фонда оценочных средств

1.1. Модели контролируемых компетенций:

Оценочные средства для контроля по дисциплине направлены на проверку знаний и умений студентов, являющихся основой формирования у обучающихся компетенции:

- ОПК-1 Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности;
- УКЕ-1 Способен использовать знания естественнонаучных дисциплин, применять методы математического анализа и моделирования, теоретического и экспериментального исследования в поставленных задачах.

В результате освоения дисциплины студенты, для формирования данных компетенций студенты должны:

- 1) знать:
- 31 определения, теоремы теории вероятностей и математической статистики;
 - 32 основные методы теории вероятностей и математической статистики.
 - 2) уметь:
- У1 решать типовые задачи теории вероятностей и математической статистики;
- У2 самостоятельно использовать математический аппарат, содержащийся в литературе по прикладным наукам, расширять свои математические познания.
 - 3) владеть:
- В1 математическим аппаратом для разработки математических моделей процессов и явлений и решения практических задач профессиональной деятельности.

1.2. Программа оценивания контролируемой компетенции:

			Наименов	ание оцено	очного средства
№ п/п	Контролируемые разделы дисциплины	Код контро- лируемой компетен- ции (или ее части)	текущий контроль успевае- мости (неделя, форма)	аттеста- ция раз- дела (неделя, форма)	Промежуточ- ная аттестация
1	Теория вероятностей	ОПК-1 УКЕ-1	5KP, 8T	13ИДЗ	УО по билетам
2	Математическая статистика	ОПК-1 УКЕ-1	15T	17KP	УО по билетам

КР – контрольная работа; Т – тест; ИДЗ – индивидуальное домашнее задание; УО – устный опрос.

1.3. Основные показатели оценивания компетенций:

Соотнесение формируемых компетенций со знаниями, умениями и навыками приведено в следующей таблице:

Индекс ком-	Проектируемые	е результаты освое	Средства и технологии	
петенции	ны <u>«Математика»</u> и индикаторы формирования			оценки
	компетенций			
	Знания (3) Умения (У) Навыки (В)			
ОПК-1	3 1, 32,	У1,У-2	B1	ИДЗ, Т, КР,УО по биле-
УКЕ-1				там

Основные показатели оценивания знаний, умений и навыков, необходимых для формирования компетенций, представлены в таблице:

Результаты обучения (освоенные умения, усво- енные знания)	Основные показатели оценки результатов	Формируемые компетенции
31 - определения, теоремы и инструменты всех разделов теории вероятностей и математической статистики;	чайное событие. Классическое определение вероятности.	ОПК-1 УКЕ-1

	потез для одной выборки.	
32 - основные методы теории вероятностей и математической статистики.	Решение задач на определение элементов комбинаторики: принципа произведения, принципа сложения, перестановки, размещения, сочетания. Вычисление классической вероятности, геометрической вероятности. Применение теорем о сумме и произведении событий, вероятности противоположного события. Нахождение условной вероятности. Применение теорем умножения вероятностей, формулы полной вероятности, формула Байеса, формулы Бернулли, локальной и интегральной теоремы Лапласа, формулы Пуассона. Определение дискретной случайной величины и ее способы задания, построение графика функции распределения. Нахождене числовых характеристик: математического ожидания, дисперсии, среднего квадратичного отклонения. Решение задач на биномиальное распределение, ее числовые характеристики. Определение непрерывных случайных величин. Связь плотности распределения и функции распределения. Решение задач на равномерное распределение, показательный закон распределения, нормальное распределение их числовые характеристики. Нахождение вариационного ряда и статистического распределения выборки, объема выборки, выборочных числовых характеристик и определение точечных оценок. Построение гистограммы частот и относительных частот по распределению выборки, проверка статистических гипотез.	ОПК-1 УКЕ-1
У1- решать ти- повые матема- тические задачи	1	ОПК-1 УКЕ-1

У2 - самостоятельно использовать математические поприкладным наукам, расширять свои математические познания.	Уметь решать математические задачи из числа общеинженерных и специальных дисциплин	ОПК-1 УКЕ-1
В1 - первичными навыками и основными методами решения математических задач из общеинженерных и специальных дисциплин	, , , , , , , , , , , , , , , , , , ,	ОПК-1 УКЕ-1

2. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ для оценки знаний, умений, навыков по дисциплине

Типовые контрольные задания представлены в соответствии с перечнем оценочных средств по дисциплине в следующей структуре:

- методические материалы, определяющие процедуры оценивания знаний, умений, навыков, характеризующих этапы формирования компетенций;
 - сами оценочные средства;
 - критерии и шкалы оценивания.

2.1 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ВХОДНОГО КОНТРОЛЯ

Педагогический анализ уровня знаний студентов первого курса, полученных на базе среднего общего образования, проводится по единым тестам НИИ мониторинга качества образования через интернет-портал http://diag.i-exam.ru/ по следующей обобщенной структуре измерительных материалов:

№ п/п	Наименование темы	Перечень учебных элементов	
1	Степени и корни	знать: понятие корня n-ой степени	
		уметь: выполнять тождественные преобразовани	
		с корнями и находить их значение	

2	Томпастрании на прооброзования	211/4M1 • HP3DHH3 DI HIAHHAHAA TAWAAATDAHAHAW
	Тождественные преобразования алгебраических выражений	знать: правила выполнения тождественных преобразований рациональных выражений,
	алгеораических выражении	
		разложение квадратного трехчлена на линейные
		множители
		уметь: раскладывать квадратный трехчлен на
		линейные множители, выполнять тождественные
3	Просброзорому	преобразования рациональных выражений
3	Преобразования	знать: формулы приведения, значения
	тригонометрических выражений	тригонометрических функций основных углов
		уметь: выполнять простейшие преобразования
4	Томинастромун на прообразоромуна	тригонометрических выражений
4	Тождественные преобразования	знать: понятие логарифма, свойства логарифмов
	логарифмических выражений	уметь: выполнять тождественные преобразования
		логарифмических выражений, применять свойства
- 5	Payayy ya waawayyyaaya	логарифмов
5	Задачи из практической	знать: способы представления данных,
	деятельности и повседневной	полученных из практических задач
	жизни	уметь: использовать приобретенные знания и
		умения в практической деятельности и
-	Taxamanagaayaya	повседневной жизни
6	Текстовая задача	знать: методы решения текстовых задач
		уметь: строить и исследовать простейшие
	V	математические модели
7	Уравнения с переменной под	знать: методы решения уравнений с переменной
	знаком модуля	под знаком модуля
		уметь: решать простейшие уравнения с
0	Hanovyovovovovovovovo	переменной под знаком модуля
8	Иррациональные уравнения	знать: приемы решения иррациональных
		уравнений
9	Поторуждания	уметь: решать иррациональные уравнения
9	Логарифмические уравнения	знать: методы решения логарифмических
		уравнений
		уметь: решать простейшие логарифмические
10	Тругомомотрумовкие урорующия	уравнения
10	Тригонометрические уравнения	знать: общие формулы решения простейших тригонометрических уравнений
		1
		уметь: решать простейшие тригонометрические
11	Системи пинайни у учетилий	уравнения
11	Системы линейных уравнений	знать: методы решения систем линейных
		уравнений
		уметь: решать системы линейных уравнений с
12	V по протин на мородоство	двумя неизвестными
12	Квадратные неравенства	знать: приемы решения неравенств второй степени
13	Помаратані низа напараматра	уметь: решать неравенства второй степени
13	Показательные неравенства	знать: способы решения показательных и
		логарифмических неравенств
		уметь: решать показательные и логарифмические
1 /	05 racry cyna y cyc 1,	неравенства
14	Область определения функции	знать: определения элементарных функций
		уметь: находить области определения
		элементарных функций

15	Графики элементарных функций	знать: графики элементарных функций
		уметь: определять по графику соответствующую
		ему функцию
16	Производная функции	знать: формулы и правила нахождения
		производных
		уметь: находить производные элементарных
		функций
17	Наименьшее и наибольшее	знать: методы нахождения наименьшего и
	значения функции	наибольшего значений непрерывной функции,
		заданной на отрезке
		уметь: находить наименьшее и наибольшее
		значения непрерывной функции, заданной на
		отрезке с помощью производной
18	Геометрический смысл	знать: геометрический смысл определенного
	определенного интеграла	интеграла
		уметь: находить площадь криволинейной
		трапеции
19	Решение прямоугольных	знать: соотношения между сторонами и углами
	треугольников	прямоугольного треугольника
		уметь: находить элементы прямоугольного
		треугольника
20	Применение геометрических	знать: формулы для нахождения поверхностей и
	знаний для решения	объемов многогранников и круглых тел
	практических задач	<i>уметь:</i> применять геометрические знания для
21		решения практических задач
21	Элементы комбинаторики,	знать: классическое определение вероятности
	статистики и теории	уметь: находить вероятность события, используя
	вероятностей	определение вероятности

Критерии и шкала оценивания:

Критерий оценивания – процент правильно выполненных заданий, в соответствии с которым определяется уровень подготовки группы и отдельных студентов по следующей шкале:

Процент правильно выполненных заданий	Уровни усвоения
[70%-100%]	высокий
[40%-59%)	не высокий
[0%-39%)	низкий

2.2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ PA3 ДЕЛ №1 «Теория вероятностей»

Контрольная работа (5 КР, 10б)

Вариант 1

№1. Из 9 билетов выигрышными являются 3. Найти вероятность того, что среди взятых наудачу 4 билетов 1) 2 выигрышных; 2) все выигрышные; 3) нет выигрышных.

Решение:

По формуле классической вероятности $P = \frac{m}{n}$, где n-общее число исходов; m-число благоприятствующих исходов:

1.
$$P(A) = \frac{c_3^2 \times c_6^2}{c_9^4}$$

2.
$$P(B) = \frac{c_3^2 \times c_6^1}{c_9^4}$$

3.
$$P(C) = \frac{c_6^4}{c_9^4}$$

№2. Три стрелка стреляют в одну мишень: при этом известно, что вероятность попадания с одного выстрела равна: 0,7 у первого стрелка; 0,6 у второго стрелка; 0,5 у третьего. Найти вероятность того, что в результате одновременного выстрела в мишень будет только одна пробоина.

Решение:

По теореме умножения для независимых событий и теореме сложения для несовместных событий:

$$P=0.7 \times 0.4 \times 0.5 + 0.3 \times 0.6 \times 0.5 + 0.3 \times 0.4 \times 0.5 = 0.29$$

№3. В группе спортсменов 20 лыжников, 6 велосипедистов и 4 бегуна. Вероятность выполнить квалификационную норму такова: для лыжника -0.7; для велосипедиста -0.8; для бегуна -0.6. Найти вероятность того, что спортсмен, выбранный наудачу, выполнит норму.

Решение:

Гипотезы

 H_1 — лыжник

 H_2^- – велосипедист

 H_3 — бегун

Вероятности гипотез

$$P(H_1) = \frac{20}{30}$$

$$P(H_2) = \frac{6}{30}$$

$$P(H_3) = \frac{4}{30}$$

Событие А – спортсмен выполнил норму

Условные вероятности

$$P(A/H_1) = 0.7$$

$$P(A/H_2) = 0.8$$

$$P(A/H_3) = 0.6$$

По формуле полной вероятности

$$P(A) = \sum_{i} P(H_i) \times P(A/H_i) = \frac{20}{30} \times \frac{7}{10} + \frac{6}{30} \times \frac{8}{10} + \frac{4}{30} \times \frac{6}{10} = 0.7$$

№4. В магазин вошло 7 покупателей. Найти вероятность того, что трое из них совершат покупки, если вероятность совершить покупку для каждого покупателя одна и та же -0.4.

Решение:

По формуле Бернулли

$$P_n(m) = C_n^m p^m q^{n-m}$$

$$n=7$$
; $m=3$; $p=0.4$; $q=1-p=0.6$

$$P_7(3) = C_7^3(0.4)^3(0.6)^4$$

Вариант 2

№1. В ящике имеется 6 белых, 4 черных и 7 красных шаров. Наудачу взяли 3 шара. Найти вероятность того, что шары будут 1) один белый; 2) разных цветов; 3) одного цвета.

Решение:

По формуле классической вероятности $P = \frac{m}{n}$, где n-общее число исходов; m-число благоприятствующих исходов:

1.
$$P(A) = \frac{c_6^1 \times c_2^{11}}{c_{12}^{3}}$$

2.
$$P(B) = \frac{c_6^1 \times c_1^1 \times c_7^1}{c_{17}^2}$$

3.
$$P(C) = \frac{C_6^3 + C_4^3 + C_7^3}{C_{17}^3}$$

№2. Рабочий обслуживает 3 станка. Известно, что вероятность бесперебойной работы на протяжении одного часа после наладки равна для первого станка -0.7; для 2-го -0.8; для 3-го -0.5. Найти вероятность того, что за один час потребует вмешательства рабочего лишь один станок.

Решение:

По теореме умножения для независимых событий и теореме сложения для несовместных событий:

$$P=0.7 \times 0.2 \times 0.5 + 0.3 \times 0.8 \times 0.5 + 0.3 \times 0.2 \times 0.5 = 0.049$$

№3. В первом ящике имеются 15 стандартных и 3 с браком радиолампы; во втором — 10 стандартных и 2 с браком. Из первого ящика взята наугад одна лампа и переложена во второй. После чего из второго ящика взята наугад лампа. Найти вероятность того, что эта лампа — стандартная.

Решение:

Гипотезы

 H_1 – переложена стандартная лампа

 H_2 – переложена бракованная лампа

Вероятности гипотез

$$P(H_1) = \frac{15}{18}$$

$$P(H_2) = \frac{3}{18}$$

Событие А – стандартная лампа из 2-го ящика

Условные вероятности

$$P(A/H_1) = \frac{10+1}{12+1} = \frac{11}{13}$$

$$P(A/H_2) = \frac{10}{12+1} = \frac{10}{13}$$

По формуле полной вероятности

$$P(A) = \sum_{i} P(H_i) \times P(A/H_i) = \frac{15}{18} \times \frac{11}{13} + \frac{3}{18} \times \frac{10}{13} = 0.8333$$

№4. В студии телевидения имеется 6 телевизионных камер. Для каждой камеры вероятность того, что она включена в данный момент, равна 0,4. Найти вероятность того, что в данный момент включены две камеры.

Решение:

По формуле Бернулли

$$P_n(m) = C_n^m p^m q^{n-m}$$

$$n=6; m=2; p=0,4; q=1-p=0,6$$

$$P_6(2) = C_6^2 (0,4)^2 (0,6)^4$$

Время выполнения: 40 мин

Критерии оценивания: 4 задания -10 баллов

3 задания — 8 баллов 2 задания — 6 баллов

Тест (8Т, 10б)

(правильный ответ подчеркнут)

1. Математическое ожидание случайной величины x, заданной законом распределения вероятностей

X_{i}	-2	-1	0	1
p_{i}	0,2	0,3	0,2	0,3

равно....

2. Если непрерывная случайная величина Х задана плотностью распределения вероятностей $f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right)$,

то распределение случайной величины X называется...

- 1) нормальным
- 2) показательным
- 3) биномиальным
- 4) равномерным
- 3. Если случайная величина X имеет закон распределения вероятностей

x_i	2	4	6	8
p_{i}	0,1	0,3	0,2	0,4

то
$$p(X<5)=...$$

- 1) 0.1
- 2) 0.3
- 3) 0.4
- 4) 0
- 4. Для любых случайных величин X и константы C имеет место равенство: дисперсия D(CX)=...
 - 1) $D(CX) = C^2M(X)$
 - 2) D(CX) = (X)/C
 - 3) D(CX)=CD(X)
 - 4) $D(CX) = C^2 D(X)$
- 5. Если случайная величина X задана плотностью распределения

 $f(x)=\frac{1}{2\sqrt{2\pi}}e^{\dfrac{-(x-1)^2}{8}}$, то математическое ожидание случайной величины Xравно:

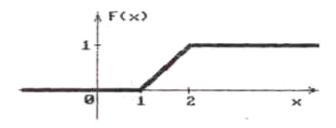
- 1)8
- 2) 1 3) 3/5
- 4) 2
- 6. Если случайная величина X задана плотностью распределения

 $f(x) = \frac{1}{2\sqrt{2\pi}} e^{\frac{-(x-1)^2}{8}}$, то дисперсия случайной величины X равна:

- 1)8
- 2) 1
- 3) 4
- 4) 2
- 7. Дискретная случайная величина задана законом распределения вероятностей:

X	-1	2	4
P	0,1	a	b

Тогда её математическое ожидание равно 3,3 если ...


$$\frac{1) a = 0.1; b = 0.8}{2) a = 0.1; b = 0.9}$$

$$\overline{2)} a = 0.1; b = 0.9$$

3)
$$a = 0.8$$
; $b = 0.1$

4)
$$a = 0.2$$
; $b = 0.7$

8. Если график функции распределения случайной величины х имеет вид

- 1) 3/4
- 2) 1/4
- 3) 3/2
- 4) 2/3

9. Если плотность распределения вероятностей имеет вид

$$f(x) = \begin{cases} \frac{1}{b-a}, x \in [ab], \\ 0, x \notin [ab], \end{cases}$$

то распределение случайной величины X называется....

- 1) нормальным
- 2) показательным
- 3) биноминальным
- 4) равномерным

Время выполнения: 30 мин

Критерии оценивания: 9 заданий -10 баллов

8 заданий – 8 баллов

6 заданий – 6 баллов

Тест (15Т, 10б)

(правильный ответ подчеркнут)

	1. Если в результате шести опытов случайная величина приобрела значения								вначения	
	5; 7	7; 6; 3; 1; 2, то	о её выб	борочн	oe cpe	цнее зн	ачение	равно		
	1)	<u>4</u>	2) 6		3) 12		4) 7		
	2. Pea	лизация выб	орки сл	іучайно	ой вели	чины и	имеет ві	ид 5, 16	, 10, 5,	7, 8, 9,16,
	10,	5. Относител	тьная ч	астота	значен	ия 5 ра	вна			
	1)	3	2) 0,2	•	3) 0,5		4 <u>) 0, .</u>	<u>3</u>	
3.	Дана	выборка объ	ема <i>п</i> . Е	Если ка	ждый	элемен	т выбор	ки увел	іичить і	з 5 раз,
	то выб	борочное сре,	днее х	- 						
		1) увеличитс	я в 25 р	аз						
		2) уменьшит	ся в 5 р	аз						
		3) не измени	гся							
		4) увеличитс	я в 5 ра	<u>3</u>						
4.	После	6 заездов авт	гомоби	ля на о	предел	ённой	трассе (были по	лучень	г следу-
	ющие	значения его	макси	мально	й скор	ости в	(m/c): 2'	7; 38; 30	0; 37; 35	5; 31,
	значен	ние несмещен	ной оп	енки м	атемат	ическо	ого ожи	дания м	аксима.	льной
	скорос	сти автомоби	ля равн	Ю						
	<u>1) 33</u>	2) 1:	5	3) 31	4	38				
5.	В резу	льтате пяти	измереі	ний длі	ины сте	ержня (одним п	риборо	м (без м	иатема-
	тичесн	сих погрешно	остей) г	іолучеі	ны след	цующи	е резулі	ьтаты (н	в мм): 92	2; 94;
	103; 1	05; 106. Несм	иещенн	ая оцен	нка дли	ны сте	ржня ра	авна		
	1) 1	106	2) 103	5	3) !	94	<u>4) 1</u>	00		
6.	Если в	в результате і	по иткг	ытов с	лучайн	ая велі	ичина п	риобрел	па значе	ения 3, 4,
	7, 10,	б, то её выбој	рочное	средне	е значе	ение ра	авно			
	1) 1	<u>2) 6</u>		3) 5	4	9				
7.	Интер	есуясь разме	ром пр	оданно	й в маг	газине 1	мужско	й обуви	і, мы по	лучили
	данны	е по100 пара	м прод	анной (обуви:					
		размер обуви	37	38	39	40	41	42	43	

число							
проданных	2	8	12	25	28	17	8
пар	_		- -			- /	

Мода распределения по размеру проданной обуви равна....

1) 42

2) 40

3) 41

4) 39

Время выполнения: 40 мин

Критерии оценивания: 7 заданий -10 баллов

6 заданий – 8 баллов

5 заданий – 6 баллов

Контрольная работа (17 КР, 10б)

В результате эксперимента получены данные, записанные в виде статистического ряда.

- 1) найти размах варьирования и разбить ряд на 5 интервалов;
- 2) построить полигон частот, гистограмму относительных частот;
- 3) найти числовые характеристики выборки \overline{X} , $D_{\hat{a}}$;

1 вариант

19.8	16.3	12.0	10.0	11.2	13.4	17.6	18.0	20.0	10.9
14.7	15.3	12.7	18.1	19.4	12.1	13.6	15.4	19.6	18.0
16.3	12.7	15.4	13.0	11.7	14.6	17.5	16.7	15.0	18.7
11.1	13.4	17.5	18.9	20.0	10.0	17.7	18.1	18.0	13.4
14.6	12.4	18.3	16.2	17.0	14.2	15.3	11.8	15.7	19.9

1) Частичных интервалов k = 5.

Разобьем все значения от 10.0 до 20.0 на 5 интервалов:

$$[10.0 - 12.0), [12.0 - 14.0), [14.0 - 16.0), [16.0 - 18.0), [18.0 - 20.0].$$

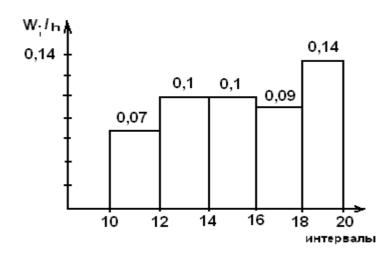
Зададим статистическое распределение выборки в виде последовательности интервалов и соответствующих им частот. В качестве частоты интервала принимают количество вариант, попавших в интервал.

Размах
$$R = x_{\text{max}} - x_{\text{min}} = 20 - 10 = 10.$$

Сумма частот n_i вариант $\sum_{i=1}^{5} n_i = n = 50$ должна быть равна объему выборки n;

длина частичного интервала (шаг) $h == \frac{12-10}{5} = 2$.

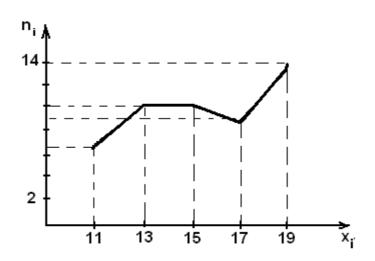
Полученная таблица является статистическим распределением выборки.


	1	1 1 '
№ интер-	Частичные интер-	Сумма частот ва-
вала	валы	риант

i	$x_i - x_{i+1}$	интервала n_i
1	10.0 - 12.0	7
2	12.0 - 14.0	10
3	14.0 - 16.0	10
4	16.0 - 18.0	9
5	18.0 - 20.0	14

Найдем относительные частоты $W_i = \frac{n_i}{n}$ и плотность относительной частоты W_i/h

Частоты	Относительные частоты	Плотность относит. частоты
n_i	$W_i = \frac{n_i}{n}$	$W_{i/_{h}}$
7	$\frac{7}{50} = 0.14$	0.07
10	$\frac{10}{50} = 0.2$	0.1
10	$\frac{10}{50} = 0.2$	0.1
9	$\frac{9}{50} = 0.18$	0.09
14	$\frac{14}{50} = 0.28$	0.14


2) Построим гистограмму частот и относительных частот по данному распределению выборки объема n=50

Гистограмма относительных частот

Построим полигон частот. Примем середины интервалов в качестве новых вариант x_i и составим статистическое распределение выборки

x_i	11	13	15	17	19
n_i	7	10	10	9	14

Полигон частот

3) Вычислим выборочную среднюю $\bar{x} = \frac{1}{n} \sum_{i=1}^{5} n_i \cdot x_i$, где x_i - варианта, n_i - частота, n - объем выборки. $\bar{x} = \frac{1}{50} (7 \cdot 11 + 10 \cdot 13 + 10 \cdot 15 + 9 \cdot 17 + 14 \cdot 19) = 15,52$.

Вычислим выборочную дисперсию:

$$D_{a} = \overline{x}^{2} - [\overline{x}]^{2} = \frac{1}{n} \sum_{i=1}^{5} n_{i} \cdot x_{i}^{2} - [\overline{x}]^{2} = 7,9696$$

Вычислим выборочное среднее квадратическое отклонение:

$$\sigma_{\hat{a}} = \sqrt{D_{\hat{a}}} = 2,7634.$$

2 вариант

189	207	213	208	186	210	198	219	229	227
202	211	220	216	227	220	210	183	213	190
197	227	187	226	213	191	209	196	202	230
211	214	220	195	182	228	202	207	192	226
193	203	232	202	215	195	220	230	214	185

1) Частичных интервалов k = 5.

Разобьем все значения от 180 до 230 на 5 интервалов:

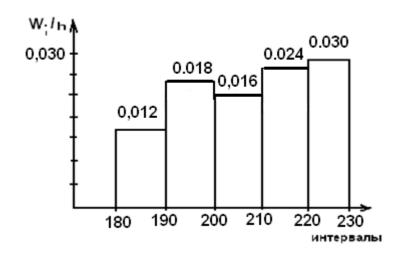
$$[180 - 190)$$
, $[190 - 200)$, $[200 - 210)$, $[210 - 220)$, $[220 - 230]$.

Зададим статистическое распределение выборки в виде последовательности интервалов и соответствующих им частот. В качестве частоты интервала принимают количество вариант, попавших в интервал.

Размах
$$R = x_{\text{max}} - x_{\text{min}} = 230 - 182 = 48.$$

Сумма частот n_i вариант $\sum_{i=1}^5 n_i = n = 50$ должна быть равна объему выборки n;

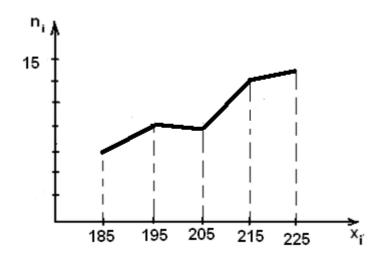
длина частичного интервала (шаг)
$$h = \frac{230-180}{5} = 10$$


Полученная таблица является статистическим распределением выборки.

№ интер-	Частичные интер-	Сумма частот ва-
вала	валы	риант
i	$x_i - x_{i+1}$	интервала n_i
1	180 - 190	6
2	190–200	9
3	200 – 210	8
4	210–220	12
5	220–230	15

Найдем относительные частоты $W_i = \frac{n_i}{n}$ и плотность относительной частоты W_i/h

Частоты	Относительные частоты	Плотность относит. частоты
n_i	$W_i = \frac{n_i}{n}$	$W_{i}/_{h}$
6	$\frac{6}{50} = 0.12$	0.012
9	$\frac{9}{50} = 0.18$	0.018
8	$\frac{8}{50} = 0.16$	0.016
12	$\frac{12}{50} = 0.24$	0.024
15	$\frac{15}{50} = 0.30$	0.030


2) Построим гистограмму частот и относительных частот по данному распределению выборки объема n=50

Гистограмма относительных частот

Построим полигон частот. Примем середины интервалов в качестве новых вариант x_i и составим статистическое распределение выборки

-					
\mathcal{X}_{i}	185	195	205	215	225
n_{i}	6	9	8	12	15

Полигон частот

3) Вычислим выборочную среднюю $\bar{x} = \frac{1}{n} \sum_{i=1}^{5} n_i \cdot x_i$, где x_i - варианта, n_i - частота, n - объем выборки. $\bar{x} = \frac{1}{50} (6 \cdot 185 + 9 \cdot 195 + 8 \cdot 205 + 12 \cdot 215 + 15 \cdot 225) = 219$.

Вычислим выборочную дисперсию:

$$D_{\hat{a}} = \overline{x}^2 - [\overline{x}]^2 = \frac{1}{n} \sum_{i=1}^{5} n_i \cdot x_i^2 - [\overline{x}]^2 = 18,21$$

Вычислим выборочное среднее квадратическое отклонение:

$$\sigma_{\hat{a}} = \sqrt{D_{\hat{a}}} = 4,27$$

Время выполнения: 40 мин

Критерии оценивания: 3 задания -10 баллов

2 задания – 6 баллов